

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. I Year I - Semester (Supplementary) Examinations, July/Aug - 2015

Mathematics - I

Time: 3 hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

Part-A (10 X 2=20 Marks)

1. For what values of k, the equations $x+y+z=1,2 x+y+4 z=k, 4 x+y+10 z=k^{2}$ have a solution.
2. Define (i) Positive definite (ii) Negative definite (iii) Positive Semi-definite (iv) Negative Semi-definite quadratic forms.
3. ${ }^{*}$ Test the convergence of the series $\sum \frac{\sqrt{n+1}-\sqrt{n}}{n^{p}}$
4. Test the convergence of the series $\sum n e^{-n^{2}}$
5. Find the radius of curvature at the origin of the curve $y=x^{4}-4 x^{3}-18 x^{2}$
6. Find the envelope of the family of the curves $y=m x+\sqrt{a^{2} m^{2}+b^{2}}, m$ is a parameter.
7. If $x^{y}+y^{x}=c$ find $\frac{d y}{d x}$
8. If the kinetic energy $\mathrm{T}=\frac{\mathrm{mv}}{}{ }^{2}$. Find approximately the change in T as m changes from 49 to 49.5 and v changes from 1600 to 1590 .
9. Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}}\left(x^{2}+y^{2}\right) d x d y$
10. Evaluate $\int_{1}^{\mathrm{c}} \int_{1}^{\text {log } y} \int_{1}^{e^{x}} \log z d z d x d y$

Cont..2..
11. (a) If $A=\left[\begin{array}{ccc}4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3\end{array}\right]$, Evaluate A^{-1}, by using Cayley Hamiton theorem.
(b) Show that the sum of the eigen values of a matrix A is the sum of the elements of the principal diagonal and product of eigen values of a matrix A is equal to its determinant.
12. (a) Discuss the convergence of the series
$\frac{x}{1}+\frac{1}{2} \cdot \frac{x^{3}}{3}+\frac{1}{2} \cdot \frac{3}{4} \frac{x^{5}}{5}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \frac{x^{7}}{7}+\ldots \ldots \ldots \ldots(x>0)$
(b) Prove that the series $\frac{\sin x}{1^{3}}+\frac{\sin 2 x}{2^{3}}+\frac{\sin 3 x}{3^{3}} \ldots \ldots \ldots \ldots \ldots$. converges absolutely
13. (a) Show that the evolute of the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ is $(x+y)^{2 / 3}+(x-y)^{2 / 3}=2 a^{2 / 3}$
(b) Trace the curve $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$
14. (a) If $u=f(r)$ and $r=\left(x^{2}+y^{2}+z^{2}\right)^{2}$. Prove that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=f^{\prime}(r)+\frac{2}{r} f^{\prime}(r)$
(b) If $u^{3}+v^{3}+w^{3}=x+y+z, u^{2}+v^{2}+w^{2}=x^{2}+y^{2}+z^{2}, u+v+w=x^{3}+y^{3}+z^{3}$ then show that $\frac{\partial(u, v, w)}{\partial(x, y, z)}=\frac{(y-z)(z-x)(x-y)}{(v-w)(w-u)(u-v)}$
15. (a) Change the order of integration and evaluate $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x$
(b) Evaluate $\iint_{R} x y(x+y) d x d y$ over the region R bounded by the curve $y=x^{2}$ and $y=x$
16. (a) Reduce the quadratic form $x^{2}-4 y^{2}+6 z^{2}+2 x y-4 x z+2 w^{2}-6 z w$ into sum of squares form. Hence find rank, index and signature of the quadratic form.
(b) Expand $(1+x)^{x}$ in powers of x.
17. (a) Find the maximum and minimum values of $f(x, y)=x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x$
(b) Expand $\mathrm{e}^{\mathrm{y}} \sin \mathrm{x}$ by using Maclurin's development series up to $3^{\text {rd }}$ degree.

